Fluorescent proteins are widely used in as reporters of gene expression, protein dynamics and metabolic activities. Similar to proteins, RNAs have highly complex distributions, behaviors, and functions in cells. To this end, Fluorescent RNAs (FRs) are mimicary of fluorescent proteins for RNA studies.
Peppers are a series of monomeric, multicolor FRs with much improved (one order of magnitude or even more) cellular fluorescence brightness and fluorescence turn-on ratio. Peppers allow simple and robust imaging of diverse RNA species in live cells with minimal perturbation of the target RNA’s transcription, localization, and translation.
Due to its high signal-background ratio, it is also feasible to perform quantification of Pepper tagged RNA in single cells or assembled cells by flow cytometry and microplate readers. These FRs provide ideal tools for live imaging of cellular RNAs.
RNA is an emerging, rapidly growing research field in biological science and medicine. In addition to the well known functions of mRNAs, rRNAs, tRNAs in the central dogma of molecule biology, recent studies reveal the identity and functions of vast noncoding RNAs (ncRNAs) that play an important role in diverse biological processes, which are reshaping the prior conceptions about RNA functions.
Methodology to visualize RNA such as fluorescent in situ hybridization (FISH), enzymatic covalent labeling require cell fixation and are not suitable for live cell imaging. RNAs with engineered motifs can be tethered with fusions of fluorescent protein and specific RNA binding proteins (RBPs) e.g. MCP, PCP, λN or Cas may be used to image RNA in live cells at the single molecule level.
However, the unbound MCP-FP molecules diffuse throughout the cells and generates high background fluorescence. In addition, whether such a heavy load of tethered protein affects the localization, stability and behavior of RNAs remains to be determined.
原位RNA熒光標(biāo)記檢測技術(shù)
Technology for in situ RNA fluorescent labeling and detection.
In the history, fluorescent proteins (FPs) of different colors had revolutionized research of life sciences, which are genetically encoded labels of proteins enabling background free tracing of proteins in live cells. RNAs of interest may also be genetically labeled similarly and straightforwardly with fluorophore-binding RNA aptamers.
Some of the dye ligands of current FRs show significant background fluorescence in live cells and/or do not readily diffuse across plasma membranes, or the FRs. Some FRs has limited stability and brightness in live cells, or function as multimer.
Peppers, a series of monomeric, highly bright, and stable FRs with a broad range of emission maxima spanning from cyan to red, were obtained by unique design of dendritic cell permeable dye ligand and multiple rounds of optimization.
Compared to currently available FRs, Peppers showed an order of magnitude enhanced cellular fluorescence intensity and fluorescence turn-on ratio, one or two orders of magnitude enhanced affinity, ~20 oC increased Tm, expanded pH tolerance, and a broad spectral range available for live cell studies.
For the first time, Peppers allow simple and robust imaging of mRNA and other RNA species in live cells with minimal perturbation of the target RNA’s transcription, localization, and translation.
Peppers may also be used in imaging of genomic loci through CRISPR display, real-time tracking of protein-RNA tethering, and super-resolution imaging of RNA by structured illumination microscopy.
Due to its high signal to background ratio, Peppers can be used in quantitative studies of RNAs in live cells, using flow cytometry or microplate reading. These Pepper FRs provide ideal tools for live imaging of cellular RNAs.